Advanced Deployment Scenarios with TensorFlow
Offered By: DeepLearning.AI via Coursera
Course Description
Overview
Bringing a machine learning model into the real world involves a lot more than just modeling. This Specialization will teach you how to navigate various deployment scenarios and use data more effectively to train your model.
In this final course, you’ll explore four different scenarios you’ll encounter when deploying models. You’ll be introduced to TensorFlow Serving, a technology that lets you do inference over the web. You’ll move on to TensorFlow Hub, a repository of models that you can use for transfer learning. Then you’ll use TensorBoard to evaluate and understand how your models work, as well as share your model metadata with others. Finally, you’ll explore federated learning and how you can retrain deployed models with user data while maintaining data privacy.
This Specialization builds upon our TensorFlow in Practice Specialization. If you are new to TensorFlow, we recommend that you take the TensorFlow in Practice Specialization first. To develop a deeper, foundational understanding of how neural networks work, we recommend that you take the Deep Learning Specialization.
Syllabus
- TensorFlow Extended
- Sharing pre-trained models with TensorFlow Hub
- Tensorboard: tools for model training
- Federated Learning
Taught by
Laurence Moroney
Related Courses
Macroeconometric ForecastingInternational Monetary Fund via edX Machine Learning With Big Data
University of California, San Diego via Coursera Data Science at Scale - Capstone Project
University of Washington via Coursera Structural Equation Model and its Applications | 结构方程模型及其应用 (粤语)
The Chinese University of Hong Kong via Coursera Data Science in Action - Building a Predictive Churn Model
SAP Learning