YoVDO

RAG from the Ground Up with Python and Ollama - Building a Document Interaction System

Offered By: Decoder via YouTube

Tags

Retrieval Augmented Generation (RAG) Courses Python Courses LLM (Large Language Model) Courses Vector Databases Courses Information Retrieval Courses Embeddings Courses Ollama Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Dive into a comprehensive 16-minute tutorial on implementing Retrieval Augmented Generation (RAG) from scratch using Python and Ollama. Learn how to parse and manipulate documents, explore the concept of embeddings for describing abstract ideas, and implement an effective method for surfacing relevant document sections based on queries. Follow along to build a script that enables a locally-hosted Language Model to interact with your own documents. Gain insights into environment setup, function implementation, embedding techniques, caching strategies, and cosine similarity for comparison. Explore potential improvements and discover how to provide context to your LLM. By the end, you'll have a solid foundation for creating RAG systems and enhancing LLM interactions with custom datasets.

Syllabus

- Intro
- Environment Setup
- Function review
- Source Document
- Starting the project
- parse_file
- Understanding embeddings
- Implementing embeddings
- Timing embedding
- Caching embeddings
- Prompt embedding
- Cosine similarity for embedding comparison
- Brainstorming improvements
- Giving context to our LLM
- CLI input
- Next steps


Taught by

Decoder

Related Courses

Advanced Data Engineering
Duke University via Coursera
AI Engineering
Scrimba via Coursera
AI Engineering
Scrimba via Coursera
AI Engineering
Scrimba via Coursera
The AI Engineer Path
Scrimba