YoVDO

Art and Science of Machine Learning em Português Brasileiro

Offered By: Google Cloud via Coursera

Tags

Machine Learning Courses Neural Networks Courses TensorFlow Courses Logistic Regression Courses Model Optimization Courses Embeddings Courses Hyperparameters Courses

Course Description

Overview

Este é o curso Art and Science of Machine Learning. O curso tem seis módulos. Falaremos sobre as habilidades essenciais de intuição, bom senso e experimentação em ML para ajustar e otimizar modelos e ter melhor desempenho. Você aprenderá a generalizar os modelos usando técnicas de regularização e conhecerá os efeitos dos hiperparâmetros, como tamanho de lote e taxa de aprendizado, sobre o desempenho do modelo. Também abordaremos alguns algoritmos mais comuns de otimização de modelo e mostraremos como especificar um método de otimização no código do TensorFlow.

Syllabus

  • Introdução
    • Este é o curso Art and Science of Machine Learning. Falaremos sobre as habilidades essenciais de intuição, bom senso e experimentação em ML para ajustar e otimizar modelos e ter melhor desempenho. Você aprenderá a generalizar os modelos usando técnicas de regularização e conhecerá os efeitos dos hiperparâmetros, como tamanho de lote e taxa de aprendizado, sobre o desempenho do modelo. Também abordaremos alguns algoritmos mais comuns de otimização de modelo e mostraremos como especificar um método de otimização no código do TensorFlow.
  • A arte do ML
    • Neste módulo, você aprenderá a ajustar o tamanho do lote e a taxa de aprendizado para melhorar o desempenho do modelo, otimizá-lo e aplicar os conceitos ao código do TensorFlow.
  • Ajuste de hiperparâmetros
    • Neste módulo, você aprenderá a diferenciar parâmetros e hiperparâmetros. Em seguida, veremos a abordagem tradicional de pesquisa de grade e outras com algoritmos mais inteligentes. Por fim, você verá como o Cloud ML Engine facilita a automação do ajuste de hiperparâmetros.
  • Uma pitada de ciência
    • Neste módulo, falaremos da ciência junto com a arte do machine learning. Primeiro vamos falar sobre como fazer a regularização da esparsidade e criar modelos mais simples e concisos. Depois abordaremos a regressão logística e veremos como determinar o desempenho.
  • A ciência das redes neurais
    • Neste módulo, vamos nos aprofundar na ciência, especificamente as redes neurais.
  • Embeddings
    • Neste módulo, você aprenderá a usar embeddings para gerenciar dados esparsos, acelerando o treinamento e reduzindo o consumo de memória dos modelos de machine learning que usam esses dados. Os embeddings também são uma forma de reduzir a dimensionalidade e tornar os modelos mais simples e generalizáveis.
  • Resumo

Taught by

Google Cloud Training

Tags

Related Courses

TensorFlow Developer Certificate Exam Prep
A Cloud Guru
Post Graduate Certificate in Advanced Machine Learning & AI
Indian Institute of Technology Roorkee via Coursera
Advanced AI Techniques for the Supply Chain
LearnQuest via Coursera
Advanced Learning Algorithms
DeepLearning.AI via Coursera
IBM AI Engineering
IBM via Coursera