Radioactive Data - Tracing Through Training
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore a comprehensive video explanation of the research paper "Radioactive data: tracing through training" in this 36-minute tutorial. Dive into the concept of marking datasets with hidden "radioactive" tags to detect their usage in training neural classifiers. Learn about the mechanics of neural classifiers, radioactive marking techniques, high-dimensional random vectors, backpropagation of fake features, and feature space realignment. Examine experimental results, including black-box testing, and gain insights into the implications for data privacy and model training. Understand how this method offers improved signal-to-noise ratio compared to data poisoning and backdoor approaches, with the ability to detect radioactive data usage even when only 1% of the training data is marked.
Syllabus
- Intro & Overview
- How Neural Classifiers Work
- Radioactive Marking via Adding Features
- Random Vectors in High-Dimensional Spaces
- Backpropagation of the Fake Features
- Re-Aligning Feature Spaces
- Experimental Results
- Black-Box Test
- Conclusion & My Thoughts
Taught by
Yannic Kilcher
Related Courses
Introduction to Data Analytics for BusinessUniversity of Colorado Boulder via Coursera Digital and the Everyday: from codes to cloud
NPTEL via Swayam Systems and Application Security
(ISC)² via Coursera Protecting Health Data in the Modern Age: Getting to Grips with the GDPR
University of Groningen via FutureLearn Teaching Impacts of Technology: Data Collection, Use, and Privacy
University of California, San Diego via Coursera