YoVDO

Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo

Offered By: Valence Labs via YouTube

Tags

Probabilistic Inference Courses Reinforcement Learning Courses Prompt Engineering Courses Sampling Courses RLHF Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive lecture on probabilistic inference in language models using twisted sequential Monte Carlo methods. Delve into how various techniques for large language models (LLMs) can be framed as sampling from unnormalized target distributions. Learn about the application of Sequential Monte Carlo (SMC) for addressing probabilistic inference challenges in LLMs. Discover the concept of learned twist functions and their role in estimating expected future potential values. Examine a novel contrastive method for learning twist functions and its connections to soft reinforcement learning. Investigate the use of bidirectional SMC bounds for evaluating the accuracy of language model inference techniques. Gain insights into practical applications, including sampling undesirable outputs for harmlessness training, generating reviews with varied sentiment, and performing infilling tasks. Access the related research paper for in-depth understanding of the concepts presented in this 1 hour and 22 minute talk by Rob Brekelmans from Valence Labs.

Syllabus

Probabilistic Inference in Language Models via Twisted Sequential Monte | Rob Brekelmans


Taught by

Valence Labs

Related Courses

Computational Neuroscience
University of Washington via Coursera
Reinforcement Learning
Brown University via Udacity
Reinforcement Learning
Indian Institute of Technology Madras via Swayam
FA17: Machine Learning
Georgia Institute of Technology via edX
Introduction to Reinforcement Learning
Higher School of Economics via Coursera