YoVDO

Artificial Intelligence

Offered By: Massachusetts Institute of Technology via MIT OpenCourseWare

Tags

Artificial Intelligence Courses Neural Networks Courses Reasoning Courses Genetic Algorithms Courses Search Algorithms Courses Probabilistic Inference Courses

Course Description

Overview

This course introduces students to the basic knowledge representation, problem solving, and learning methods of artificial intelligence. Upon completion of 6.034, students should be able to develop intelligent systems by assembling solutions to concrete computational problems; understand the role of knowledge representation, problem solving, and learning in intelligent-system engineering; and appreciate the role of problem solving, vision, and language in understanding human intelligence from a computational perspective.

Syllabus

1. Introduction and Scope.
2. Reasoning: Goal Trees and Problem Solving.
3. Reasoning: Goal Trees and Rule-Based Expert Systems.
4. Search: Depth-First, Hill Climbing, Beam.
5. Search: Optimal, Branch and Bound, A*.
6. Search: Games, Minimax, and Alpha-Beta.
7. Constraints: Interpreting Line Drawings.
8. Constraints: Search, Domain Reduction.
9. Constraints: Visual Object Recognition.
10. Introduction to Learning, Nearest Neighbors.
11. Learning: Identification Trees, Disorder.
12a: Neural Nets.
12b: Deep Neural Nets.
13. Learning: Genetic Algorithms.
14. Learning: Sparse Spaces, Phonology.
15. Learning: Near Misses, Felicity Conditions.
16. Learning: Support Vector Machines.
17. Learning: Boosting.
18. Representations: Classes, Trajectories, Transitions.
19. Architectures: GPS, SOAR, Subsumption, Society of Mind.
21. Probabilistic Inference I.
22. Probabilistic Inference II.
23. Model Merging, Cross-Modal Coupling, Course Summary.
Mega-R1. Rule-Based Systems.
Mega-R2. Basic Search, Optimal Search.
Mega-R3. Games, Minimax, Alpha-Beta.
Mega-R4. Neural Nets.
Mega-R5. Support Vector Machines.
Mega-R6. Boosting.
Mega-R7. Near Misses, Arch Learning.


Taught by

Prof. Patrick Henry Winston

Tags

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Artificial Intelligence for Robotics
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent