YoVDO

Principles of Good Machine Learning Systems Design

Offered By: Toronto Machine Learning Series (TMLS) via YouTube

Tags

Machine Learning Courses Data Science Courses MLOps Courses Data Management Courses Model Deployment Courses Open Source Courses DataOps Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the principles of effective machine learning systems design in this 36-minute conference talk by Chip Huyen, ML Engineer and Open Source Lead at Snorkel AI, presented at the Toronto Machine Learning Series. Delve into the distinctions between ML in research and production environments, and understand the unique challenges of ML systems compared to traditional software. Examine common myths surrounding ML production and learn an iterative framework for designing ML systems, covering project scoping, data management, model development, deployment, maintenance, and business analysis. Gain insights into the roles of DataOps, ML Engineering, MLOps, and data science within this framework, and discover the key skills required at each stage to help structure effective teams. Conclude with an overview of the ML production ecosystem, exploring the economics of open source and open-core businesses.

Syllabus

Principles of Good Machine Learning Systems Design


Taught by

Toronto Machine Learning Series (TMLS)

Related Courses

DataOps Methodology
IBM via Coursera
Data Visualisation with Python: Bokeh and Advanced Layouts
FutureLearn
Smart Data Pipelines to Azure - Ingesting and Migrating Data the DataOps Way
Microsoft via YouTube
DataOps for the Modern Computer Vision Stack
Data Science Dojo via YouTube
Scaling Data Preparation for Your Data-Centric AI Development
Open Data Science via YouTube