Primal-Dual Optimization Methods for Robust Machine Learning
Offered By: Institute for Mathematical Sciences via YouTube
Course Description
Overview
Explore primal-dual optimization methods for robust machine learning in this 47-minute lecture by Stephen Wright from the University of Wisconsin-Madison. Delve into advanced techniques that enhance the resilience and reliability of machine learning models. Gain insights into the application of primal-dual algorithms in addressing challenges related to robustness in various machine learning scenarios. Learn how these optimization methods can improve model performance and stability across different domains.
Syllabus
Primal-dual Optimization Methods for Robust Machine Learning
Taught by
Institute for Mathematical Sciences
Related Courses
Convex OptimizationStanford University via edX FA19: Deterministic Optimization
Georgia Institute of Technology via edX Applied Optimization For Wireless, Machine Learning, Big Data
Indian Institute of Technology Kanpur via Swayam Statistical Machine Learning
Eberhard Karls University of Tübingen via YouTube Convex Optimization
NIOS via YouTube