Primal-Dual Optimization Methods for Robust Machine Learning
Offered By: Institute for Mathematical Sciences via YouTube
Course Description
Overview
Explore primal-dual optimization methods for robust machine learning in this 47-minute lecture by Stephen Wright from the University of Wisconsin-Madison. Delve into advanced techniques that enhance the resilience and reliability of machine learning models. Gain insights into the application of primal-dual algorithms in addressing challenges related to robustness in various machine learning scenarios. Learn how these optimization methods can improve model performance and stability across different domains.
Syllabus
Primal-dual Optimization Methods for Robust Machine Learning
Taught by
Institute for Mathematical Sciences
Related Courses
Automata TheoryStanford University via edX Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX 算法设计与分析 Design and Analysis of Algorithms
Peking University via Coursera How to Win Coding Competitions: Secrets of Champions
ITMO University via edX Introdução à Ciência da Computação com Python Parte 2
Universidade de São Paulo via Coursera