YoVDO

FA19: Deterministic Optimization

Offered By: Georgia Institute of Technology via edX

Tags

Data Science Courses Calculus Courses Algorithms and Data Structures Courses Linear Algebra Courses Simplex Method Courses Convex Optimization Courses

Course Description

Overview

This course blends optimization theory and computation and its teachings can be applied to modern data analytics, economics, and engineering. Organized across four modules, it takes learners through basic concepts, models, and algorithms in linear optimization, convex optimization, and integer optimization. 

The first module of the course is a general overview of key concepts in linear algebra, calculus, and optimization. The second module of the course is on linear optimization, covering modeling techniques with many applications, basic polyhedral theory, simplex method, and duality theory. The third module is on convex conic optimization, which is a significant generalization of linear optimization. The fourth and final module focuses on integer optimization, which augments the previously covered optimization models with the flexibility of integer decision variables.


Syllabus

Week 1

  • Module 1: Introduction
  • Module 2: Illustration of the Optimization Problems

Week 2

  • Module 3: Review of Mathematical Concepts
  • Module 4: Convexity

Week 3

  • Module 5: Outcomes of Optimization
  • Module 6: Optimality Certificates

Week 4

  • Module 7: Unconstrained Optimization: Derivate Based
  • Module 8: Unconstrained Optimization: Derivative Free

Week 5

  • Module 9: Linear Optimization Modeling – Network Flow Problems
  • Module 10: Linear Optimization Modeling – Electricity Markets

Week 6

  • Module 11: Linear Optimization Modeling – Decision-Making Under Uncertainty
  • Module 12: Linear Optimization Modeling – Handling Nonlinearity 

Week 7

  • Module 13: Geometric Aspects of Linear Optimization
  • Module 14: Algebraic Aspect of Linear Optimization

Midterm

Week 8

  • Module 15: Simplex Method in a Nutshell
  • Module 16: Further Development of Simplex Method

Week 9

  • Module 17: Linear Programming Duality
  • Module 18: Robust Optimization

Week 10

  • Module 19: Nonlinear Optimization Modeling – Approximation and Fitting
  • Module 20: Nonlinear Optimization Modeling – Statistical Estimation

Week 11

  • Module 21: Convex Conic Programming – Introduction
  • Module 22: Second-Order Conic Programming – Examples

Week 12

  • Module 23: Second-Order Conic Programming – Advanced Modeling
  • Module 24: Semi-definite Programming – Advanced Modeling

Week 13

  • Module 25: Discrete Optimization: Introduction
  • Module 26: Discrete Optimization: Modeling with binary variables - 1

Week 14

  • Module 27: Discrete Optimization: Modeling with binary variables – 2
  • Module 28: Discrete Optimization: Modeling exercises

Week 15

  • Module 29: Discrete Optimization: Linear programming relaxation
  • Module 30: Discrete Optimization: Solution methods

Taught by

Andy Sun

Tags

Related Courses

Advanced Machine Learning
The Open University via FutureLearn
On-Ramp to AP* Calculus
Weston High School via edX
Preparing for the AP* Calculus AB and BC Exams
University of Houston System via Coursera
Calculus: Single Variable Part 4 - Applications
University of Pennsylvania via Coursera
Applications of Calculus
Boxplay via FutureLearn