Physics-Informed Machine Learning for Complex Systems - A Focus on Power System Applications
Offered By: GERAD Research Center via YouTube
Course Description
Overview
Explore the intersection of physics-informed machine learning and power systems in this 52-minute webinar from GERAD Research Center. Delve into the challenges posed by increasing renewable energy penetration and the resulting vulnerability to disturbances in power systems. Discover how machine learning techniques can be applied to assess vulnerabilities and enhance resilience in these complex systems. Learn about effective reduced models for large electric transmission grids, presented as PDE equations over covered areas. Understand the process of calibrating these models using recorded operational data. Gain insights into the importance of efficient tools for power system analysis in the context of evolving energy landscapes.
Syllabus
Physics-Informed Machine Learning for Complex Systems : A Focus on Power System Applications
Taught by
GERAD Research Center
Related Courses
Deep Learning to Discover Coordinates for Dynamics - Autoencoders & Physics Informed Machine LearningSteve Brunton via YouTube Machine Learning in Fluid Dynamics and Climate Physics
Alan Turing Institute via YouTube Uncertainty Quantification with Physics-Informed Machine Learning
Alan Turing Institute via YouTube Unique Challenges in Physics-Informed Machine Learning
Alan Turing Institute via YouTube Physics Informed Machine Learning: High-Level Overview of AI and ML in Science and Engineering
Steve Brunton via YouTube