YoVDO

Uncertainty Quantification with Physics-Informed Machine Learning

Offered By: Alan Turing Institute via YouTube

Tags

Uncertainty Quantification Courses Deep Learning Courses Neural Network Architecture Courses Physics Informed Machine Learning Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore uncertainty quantification in physics-informed machine learning through this comprehensive lecture. Delve into two key approaches: Physics-informed Architecture (PIA) and Physics-informed Learning (PIL). Discover how PIA hard-encodes physics knowledge into neural network architectures to produce meaningful uncertainty estimates, illustrated through a case study on lake temperature modeling with monotonicity constraints. Examine the more versatile PIL approach, focusing on its integration with generative adversarial networks (PID-GAN) for uncertainty quantification in scenarios involving closed-form equations or partial differential equations. Learn about an extension of PID-GAN designed for real-world applications where available physics equations are based on simplified assumptions. Gain insights into the critical importance of uncertainty quantification as deep learning increasingly influences scientific applications, and understand how incorporating physics knowledge enhances the consistency and generalizability of machine learning models in scientific contexts.

Syllabus

Arka Daw - Uncertainty Quantification with Physics-informed Machine Learning


Taught by

Alan Turing Institute

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera
Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera
Leading Ambitious Teaching and Learning
Microsoft via edX