On the P=W Conjecture II
Offered By: IMSA via YouTube
Course Description
Overview
Delve into an advanced mathematics lecture on the mirror P=W conjecture, delivered by Andrew Harder from Lehigh University. Explore the conjecture's prediction of how the weight filtration on the cohomology of a log Calabi-Yau pair behaves under mirror symmetry. Review the conjecture's statement and examine evidence in low dimensions, including proofs for complements of smooth elliptic curves in del Pezzo surfaces and their mirrors, as well as complements of smooth K3 surfaces in Fano threefolds and weak Fano toric threefolds. Discover how weight and perverse Leray filtrations can be interpreted through Lagrangian torus fibrations, and learn about potential applications for verifying the mirror P=W conjecture more broadly. Gain insights into ongoing research conducted in collaboration with Katzarkov-Przyjalkowski and Katzarkov-Pantev in this hour-long exploration of cutting-edge mathematical concepts.
Syllabus
On the P=W Conjecture II
Taught by
IMSA
Related Courses
Mirror Symmetry for Young Students - Elementary Mathematics ExplainedInsights into Mathematics via YouTube Gauge Theory and the Analytic Approach to Geometric Langlands - Edward Witten
Institute for Advanced Study via YouTube Out of the Closet and Into the Mirror
Fields Institute via YouTube Mirror Symmetry for Character Varieties and Field Theory by Sergey Galkin
International Centre for Theoretical Sciences via YouTube Tamas Hausel - Enhanced Mirror Symmetry for Langlands Dual Hitchin Systems
International Mathematical Union via YouTube