Homological Percolation: The Formation of Giant Cycles
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore the fascinating world of homological percolation and the formation of giant cycles in this hour-long lecture by Omer Bobrowski. Delve into a higher-dimensional analogue of percolation theory, examining the emergence of "giant" cycles in random point clouds generated over manifolds. Learn about the phase transitions describing the birth-time of these giant cycles and their significance in differentiating between signal and noise in persistence diagrams. Discover an unexpected connection to the Euler characteristic curve and gain insights into topics such as persistent homology, continuous percolation, and Gaussian random fields. Understand the applications of these concepts in probability theory and statistical physics, and explore future directions in this cutting-edge research area.
Syllabus
Intro
PERSISTENT HOMOLOGY
THE MAXIMAL PERSISTENCE OF NOISE
TYPICAL BEHAVIOR
CROSSING PROBABILITIES
CONT. PERC. IN A BOX - SETUP
CONT. PERC. - GIANT COMPONENTS
"GIANT" K-CYCLES
HOMOLOGICAL PERCOLATION
MAIN RESULT
SIGNAL VS. NOISE
H, PERCOLATION
DUALITY - PROOF
H.- -PERCOLATION
BIG PICTURE?
EULER CHARACTERISTIC
EC & PERCOLATION?
SIMULATIONS
PERMUTAHEDRAL SITE-PERCOLATION
GAUSSIAN RANDOM FIELDS
SUMMARY & FUTURE WORK
Taught by
Applied Algebraic Topology Network
Related Courses
Topology for Time SeriesData Science Dojo via YouTube Studying Fluid Flows with Persistent Homology - Rachel Levanger
Institute for Advanced Study via YouTube Persistence Diagram Bundles- A Multidimensional Generalization of Vineyards
Applied Algebraic Topology Network via YouTube GPU Accelerated Computation of VR Barcodes in Evaluating Deep Learning Models
Applied Algebraic Topology Network via YouTube New Results in Computing Zigzag and Multiparameter Persistence
Applied Algebraic Topology Network via YouTube