YoVDO

Neural SDEs - Deep Generative Models in the Diffusion Limit - Maxim Raginsky

Offered By: Institute for Advanced Study via YouTube

Tags

Deep Generative Models Courses Neural Networks Courses Sampling Courses Markov Chains Courses Stochastic Processes Courses

Course Description

Overview

Explore the diffusion limit of deep generative models in this comprehensive lecture. Delve into the unified perspective on sampling and variational inference through stochastic control. Learn how to quantify the expressiveness of diffusion-based generative models and discover efficient sampling techniques for a wide class of terminal target distributions. Examine the proof of sampling accuracy using Kullback-Leibler divergence and investigate an unbiased, finite-variance simulation scheme implementable as a deep generative model with a random number of layers. Cover topics such as continuous-time neural nets, parabolic PDEs, optimal control, the Schrödinger Bridge Problem, and nonparametric sampling, while gaining insights into empirical process techniques.

Syllabus

Introduction
What is a generative model
Diffusion process
Continuoustime neural nets
Questions
Coming up
Exact Sampling
Parabolic PDEs
Optimal Control
Schroedinger Bridge Problem
Variational Inference
Nonparametric Sampling
Proof
Empirical Process Techniques


Taught by

Institute for Advanced Study

Related Courses

Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Preparing for the AP* Statistics Exam
University of Houston System via Coursera
Solid Science: Research Methods
University of Amsterdam via Coursera
Preparing for the AP* Statistics Exam
Tennessee Board of Regents via edX
Processamento Digital de Sinais - Amostragem
Universidade Estadual de Campinas via Coursera