Machine Learning with Graphs - Fall 2019
Offered By: Stanford University via YouTube
Course Description
Overview
Syllabus
Lecture 1 Introduction; Structure of Graphs.
Lecture 2 Properties of Networks And Random Graph Models.
Lecture 3 Motifs and Structural Roles in Networks.
Lecture 4 Community Structure in Networks.
Lecture 5 Spectral Clustering.
Lecture 6 Message Passing and Node Classification.
Lecture 7 Graph Representation Learning.
Lecture 8 Graph Neural Networks.
Lecture 9 Graph Neural Networks Implementation with Pytorch Geometric.
Lecture 10 Deep Generative Models for Graphs.
Lecture 11 Link Analysis - PageRank.
Lecture 12 Network Effects and Cascading Behavior.
Lecture 13 Probabilistic Contagion and Models of Influence.
Lecture 14 Influence Maximization in Networks.
Lecture 15 Outbreak Detection in Networks.
Lecture 16 Network Evolution.
Lecture 17 Reasoning over Knowledge Graphs.
Lecture 18 Limitations of Graph Neural Networks.
Lecture 19 Applications of Graph Neural Networks.
Taught by
Hussain Kara Fallah
Tags
Related Courses
An Introduction to Computer NetworksStanford University via Independent Introduction to Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera Network Analysis in Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera Networks, Crowds and Markets
Cornell University via edX Networking Leadership 101: Building Your Core Professional Network
Center for Creative Leadership via Acumen Academy