YoVDO

Neural Ordinary Differential Equations

Offered By: Yannic Kilcher via YouTube

Tags

Differential Equations Courses Deep Learning Courses Neural Networks Courses Ordinary Differential Equations Courses

Course Description

Overview

Explore the groundbreaking concept of Neural Ordinary Differential Equations in this informative video. Delve into a new family of deep neural network models that parameterize the derivative of the hidden state using a neural network, computed with a black-box differential equation solver. Discover the advantages of these continuous-depth models, including constant memory cost, adaptive evaluation strategies, and the ability to trade numerical precision for speed. Learn about their applications in continuous-depth residual networks and continuous-time latent variable models. Examine the innovative continuous normalizing flows, a generative model capable of training by maximum likelihood without data dimension partitioning or ordering. Understand the scalable backpropagation method through ODE solvers, enabling end-to-end training within larger models. Follow along as the video covers introduction, residual networks, advantages, evaluation, sequential data, experiments, and conclusion, providing a comprehensive overview of this cutting-edge machine learning technique.

Syllabus

Introduction
Residual Network
Advantages
Evaluation
Sequential Data
Experiments
Conclusion


Taught by

Yannic Kilcher

Related Courses

Dynamical Modeling Methods for Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera
Linear Differential Equations
Boston University via edX
Equations différentielles : de Newton à nos jours
Sorbonne University via France Université Numerique
Matlab Programming for Numerical Computation
Indian Institute of Technology Madras via Swayam
Introduction to Dynamical Models in Biology
Indian Institute of Technology Guwahati via Swayam