Nearly Sample Optimal Sparse Fourier Transform in Any Dimension - RIPless and Filterless
Offered By: IEEE via YouTube
Course Description
Overview
Explore a groundbreaking IEEE conference talk on the development of a nearly sample-optimal sparse Fourier transform applicable to any dimension, without the need for Restricted Isometry Property (RIP) or filtering techniques. Delve into the innovative research presented by Vasileios Nakos, Zhao Song, and Zhengyu Wang as they discuss their novel approach to signal processing and data analysis across multiple dimensions.
Syllabus
(Nearly) Sample Optimal Sparse Fourier Transform in Any Dimension; RIPless and Filterless
Taught by
IEEE FOCS: Foundations of Computer Science
Tags
Related Courses
Survey of Music TechnologyGeorgia Institute of Technology via Coursera Fundamentals of Electrical Engineering Laboratory
Rice University via Coursera Critical Listening for Studio Production
Queen's University Belfast via FutureLearn Fundamentos de Comunicaciones Ópticas
Universitat Politècnica de València via UPV [X] Sense101x: Sense, Control, Act: Measure the Universe, Transform the World
University of Queensland via edX