Машинное обучение на больших данных
Offered By: Higher School of Economics via Coursera
Course Description
Overview
И исследователи в лабораториях, и инженеры в больших корпорациях бьются над одной задачей — получить наиболее точную предсказательную модель по имеющимся данным. Эту задачу можно решить, используя современные методы из области машинного обучения. К сожалению, когда данных становится слишком много, классические алгоритмы становятся неэффективными или перестают работать вовсе.
В этом онлайн-курсе НИУ ВШЭ мы рассмотрим основные проблемы, которые возникают при попытке обучить машину на больших данных, и методы их решения. Изучим подходы для эффективной разметки данных, модификации в классических алгоритмах, которые позволяют им эффективно работать, а также наиболее популярные инструменты для решения задач интеллектуального анализа данных.
В этом онлайн-курсе НИУ ВШЭ мы рассмотрим основные проблемы, которые возникают при попытке обучить машину на больших данных, и методы их решения. Изучим подходы для эффективной разметки данных, модификации в классических алгоритмах, которые позволяют им эффективно работать, а также наиболее популярные инструменты для решения задач интеллектуального анализа данных.
Syllabus
- Подготовка данных к обучению
- Сегодня машинное обучение в основном хорошо работает, когда у нас есть большие массивы размеченных данных. На этой неделе мы разберемся, какие форматы данных и разметки существуют и как эту разметку можно собирать.
- Обучение классических моделей на больших данных
- На этой неделе мы разберемся как обучать классические алгоритмы (линейные модели и деревья решений) на больших данных.
- Построение рекомендательных систем
- На этой неделе мы посмотрим, как можно распараллелить классические алгоритмы, применяемые в рекомендательных системах.
- Анализ больших объемов текстовой информации
- На этой неделе рассмотрим задачи машинного обучения на текстах. Поговорим про важный этап - предобработку текста, и то, как получить структурированное представление текстовых данных с помощью таких моделей как word2vec и BERT.
- Обучение глубоких нейронных сетей
- На этой неделе будем говорить о том, как распараллелить обучение современных нейросетей. Узнаем, как устроены внутри Horovod и Parameter Server. Также поговорим про Transfer Learning как способ избежать долгого обучения сети с нуля.
Taught by
Andrei Zimovnov
Tags
Related Courses
Building a unique NLP project: 1984 book vs 1984 albumCoursera Project Network via Coursera Amazon Echo Reviews Sentiment Analysis Using NLP
Coursera Project Network via Coursera Analizando sentimientos y entidades en textos con Azure
Coursera Project Network via Coursera Análisis de texto en archivos con Azure cognitive search
Coursera Project Network via Coursera Applying Data Analytics in Accounting
University of Illinois at Urbana-Champaign via Coursera