Машинное обучение на больших данных
Offered By: Higher School of Economics via Coursera
Course Description
Overview
И исследователи в лабораториях, и инженеры в больших корпорациях бьются над одной задачей — получить наиболее точную предсказательную модель по имеющимся данным. Эту задачу можно решить, используя современные методы из области машинного обучения. К сожалению, когда данных становится слишком много, классические алгоритмы становятся неэффективными или перестают работать вовсе.
В этом онлайн-курсе НИУ ВШЭ мы рассмотрим основные проблемы, которые возникают при попытке обучить машину на больших данных, и методы их решения. Изучим подходы для эффективной разметки данных, модификации в классических алгоритмах, которые позволяют им эффективно работать, а также наиболее популярные инструменты для решения задач интеллектуального анализа данных.
В этом онлайн-курсе НИУ ВШЭ мы рассмотрим основные проблемы, которые возникают при попытке обучить машину на больших данных, и методы их решения. Изучим подходы для эффективной разметки данных, модификации в классических алгоритмах, которые позволяют им эффективно работать, а также наиболее популярные инструменты для решения задач интеллектуального анализа данных.
Syllabus
- Подготовка данных к обучению
- Сегодня машинное обучение в основном хорошо работает, когда у нас есть большие массивы размеченных данных. На этой неделе мы разберемся, какие форматы данных и разметки существуют и как эту разметку можно собирать.
- Обучение классических моделей на больших данных
- На этой неделе мы разберемся как обучать классические алгоритмы (линейные модели и деревья решений) на больших данных.
- Построение рекомендательных систем
- На этой неделе мы посмотрим, как можно распараллелить классические алгоритмы, применяемые в рекомендательных системах.
- Анализ больших объемов текстовой информации
- На этой неделе рассмотрим задачи машинного обучения на текстах. Поговорим про важный этап - предобработку текста, и то, как получить структурированное представление текстовых данных с помощью таких моделей как word2vec и BERT.
- Обучение глубоких нейронных сетей
- На этой неделе будем говорить о том, как распараллелить обучение современных нейросетей. Узнаем, как устроены внутри Horovod и Parameter Server. Также поговорим про Transfer Learning как способ избежать долгого обучения сети с нуля.
Taught by
Andrei Zimovnov
Tags
Related Courses
Passion Driven StatisticsWesleyan University via Coursera Machine Learning With Big Data
University of California, San Diego via Coursera Big Data - Capstone Project
University of California, San Diego via Coursera Data Science at Scale - Capstone Project
University of Washington via Coursera Анализ данных: финальный проект
Moscow Institute of Physics and Technology via Coursera