Modular and Composable Transfer Learning
Offered By: USC Information Sciences Institute via YouTube
Course Description
Overview
Explore modular and composable transfer learning strategies in this informative lecture presented by Jonas Pfeiffer at USC Information Sciences Institute. Delve into adapter-based fine-tuning techniques for parameter-efficient transfer learning with large pre-trained transformer models. Discover how small neural network components introduced at each layer can encapsulate downstream task information while keeping pre-trained parameters frozen. Learn about the modularity and composability of adapters for improving target task performance and achieving zero-shot cross-lingual transfer. Examine the benefits of adding modularity during pre-training to mitigate catastrophic interference and address challenges in multilingual models. Gain insights from Pfeiffer's extensive research experience in modular representation learning across multi-task, multilingual, and multi-modal contexts.
Syllabus
Modular and Composable Transfer Learning
Taught by
USC Information Sciences Institute
Related Courses
Structuring Machine Learning ProjectsDeepLearning.AI via Coursera Natural Language Processing on Google Cloud
Google Cloud via Coursera Introduction to Learning Transfer and Life Long Learning (3L)
University of California, Irvine via Coursera Advanced Deployment Scenarios with TensorFlow
DeepLearning.AI via Coursera Neural Style Transfer with TensorFlow
Coursera Project Network via Coursera