YoVDO

Fine-tuning Large Models on Local Hardware Using PEFT and Quantization

Offered By: EuroPython Conference via YouTube

Tags

Fine-Tuning Courses Machine Learning Courses Neural Networks Courses Quantization Courses Model Training Courses Hugging Face Courses PEFT Courses Parameter-Efficient Fine-Tuning Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the world of fine-tuning large neural networks like Large Language Models (LLMs) on modest hardware in this 28-minute EuroPython 2024 conference talk. Discover how Parameter-Efficient Fine-Tuning (PEFT) and quantization techniques have made it possible to train big models without excessive hardware requirements. Learn about the challenges associated with fine-tuning large models, the proposed solutions and their mechanisms, and gain practical insights into applying the PEFT library. Understand how the PEFT library and the Hugging Face ecosystem have democratized these advanced techniques, making them accessible to a wider audience of developers and researchers.

Syllabus

Fine-tuning large models on local hardware — Benjamin Bossan


Taught by

EuroPython Conference

Related Courses

Hugging Face on Azure - Partnership and Solutions Announcement
Microsoft via YouTube
Question Answering in Azure AI - Custom and Prebuilt Solutions - Episode 49
Microsoft via YouTube
Open Source Platforms for MLOps
Duke University via Coursera
Masked Language Modelling - Retraining BERT with Hugging Face Trainer - Coding Tutorial
rupert ai via YouTube
Masked Language Modelling with Hugging Face - Microsoft Sentence Completion - Coding Tutorial
rupert ai via YouTube