MLFlow Projects: Dockerized Environments in MLflow
Offered By: The Machine Learning Engineer via YouTube
Course Description
Overview
Explore the integration of Docker environments with MLflow Projects in this 27-minute video tutorial. Learn how to leverage containerized environments for your machine learning components while utilizing Databricks as an artifact repository and tracking server. Gain hands-on experience in implementing MLOps practices with MLflow, focusing on the use of Docker for reproducible and portable machine learning workflows. Access the accompanying code repository on GitHub to follow along and apply the concepts demonstrated in the video. Enhance your data science and machine learning skills by mastering the combination of MLflow Projects and Docker for more efficient and scalable MLOps pipelines.
Syllabus
MLOps MLFlow: MLFlow Projects : Dockerized Environments in MLflow #datascience #machinelearning
Taught by
The Machine Learning Engineer
Related Courses
Data AnalysisJohns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Scientific Computing
University of Washington via Coursera Introduction to Data Science
University of Washington via Coursera Web Intelligence and Big Data
Indian Institute of Technology Delhi via Coursera