Mixed Hodge Structures Attached to Hybrid Landau–Ginzburg Models
Offered By: IMSA via YouTube
Course Description
Overview
Explore the intricate world of mixed Hodge structures in this advanced mathematics lecture by Andrew Harder from Lehigh University. Delve into Shamoto's construction of mixed Hodge structures for Landau-Ginzburg models and their connection to mirror symmetry for Fano varieties. Examine the functorial properties of these structures, particularly in relation to decompositions of the potential function. Discover a new spectral sequence linking the mixed Hodge structures of different Landau-Ginzburg models and its relationship to the perverse Leray filtration. Gain insights into concrete applications of this spectral sequence in the field of algebraic geometry and mirror symmetry.
Syllabus
Mixed Hodge Structures Attached to Hybrid Landau–Ginzburg Models
Taught by
IMSA
Related Courses
Commutative Algebra and Algebraic Geometry - 15th ALGA MeetingInstituto de Matemática Pura e Aplicada via YouTube Blow Up Formulae and Invariants II - Dimension Theory
IMSA via YouTube Singularities of the Quantum Connection on a Fano Variety
M-Seminar, Kansas State University via YouTube An Update on SYZ Mirror Symmetry and Family Floer Theory
Institut des Hautes Etudes Scientifiques (IHES) via YouTube Holomorphic Discs of Negative Maslov Index and Extended Deformations in Mirror Symmetry
IMSA via YouTube