Mixed Hodge Structures Attached to Hybrid Landau–Ginzburg Models
Offered By: IMSA via YouTube
Course Description
Overview
Explore the intricate world of mixed Hodge structures in this advanced mathematics lecture by Andrew Harder from Lehigh University. Delve into Shamoto's construction of mixed Hodge structures for Landau-Ginzburg models and their connection to mirror symmetry for Fano varieties. Examine the functorial properties of these structures, particularly in relation to decompositions of the potential function. Discover a new spectral sequence linking the mixed Hodge structures of different Landau-Ginzburg models and its relationship to the perverse Leray filtration. Gain insights into concrete applications of this spectral sequence in the field of algebraic geometry and mirror symmetry.
Syllabus
Mixed Hodge Structures Attached to Hybrid Landau–Ginzburg Models
Taught by
IMSA
Related Courses
Introduction to Algebraic Geometry and Commutative AlgebraIndian Institute of Science Bangalore via Swayam Introduction to Algebraic Geometry and Commutative Algebra
NPTEL via YouTube Basic Algebraic Geometry - Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity
NPTEL via YouTube Basic Algebraic Geometry
NIOS via YouTube Affine and Projective Geometry, and the Problem of Lines
Insights into Mathematics via YouTube