YoVDO

Deep Generative Modeling - MIT 6.S191 Lecture 4

Offered By: Alexander Amini via YouTube

Tags

Generative Models Courses Machine Learning Courses Deep Learning Courses Neural Networks Courses Autoencoders Courses Variational Autoencoders Courses Latent Variable Models Courses Diffusion Models Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore deep generative modeling in this comprehensive lecture from MIT's Introduction to Deep Learning course. Delve into the importance of generative models, latent variable models, and autoencoders. Learn about variational autoencoders, including priors on latent distributions, the reparameterization trick, and applications in latent perturbation, disentanglement, and debiasing. Discover generative adversarial networks (GANs), their intuitions, training processes, and recent advances. Examine CycleGAN for unpaired translation and get a sneak peek at diffusion models. Gain valuable insights into cutting-edge deep learning techniques through this in-depth, 56-minute presentation by lecturer Ava Amini.

Syllabus

​ - Introduction
- Why care about generative models?
​ - Latent variable models
​ - Autoencoders
​ - Variational autoencoders
- Priors on the latent distribution
​ - Reparameterization trick
​ - Latent perturbation and disentanglement
- Debiasing with VAEs
​ - Generative adversarial networks
​ - Intuitions behind GANs
- Training GANs
- GANs: Recent advances
- CycleGAN of unpaired translation
- Diffusion Model sneak peak


Taught by

https://www.youtube.com/@AAmini/videos

Related Courses

Visual Recognition & Understanding
University at Buffalo via Coursera
Deep Learning for Computer Vision
IIT Hyderabad via Swayam
Deep Learning in Life Sciences - Spring 2021
Massachusetts Institute of Technology via YouTube
Advanced Deep Learning Methods for Healthcare
University of Illinois at Urbana-Champaign via Coursera
Generative Models
Serrano.Academy via YouTube