YoVDO

Learning What We Know and Knowing What We Learn - Gaussian Process Priors for Neural Data Analysis

Offered By: MITCBMM via YouTube

Tags

Gaussian Processes Courses Factor Analysis Courses Bayesian Inference Courses Latent Variable Models Courses

Course Description

Overview

Explore the intricacies of Gaussian process priors for neural data analysis in this comprehensive lecture. Delve into the importance of latent variable models, Bayesian inference, and covariance kernels in neural data analysis. Learn about factor analysis, spectral mixture kernels, and margin likelihood through practical examples and Colab notebooks. Discover the challenges and limitations of data-driven approaches, and examine the results of Bayesian GPFA. Gain insights from additional resources, including papers on Gaussian process factor analysis with dynamical structure and extensions to non-Euclidean manifolds. Understand how these techniques can be applied to real-world scenarios, such as analyzing hippocampal encoding in evidence accumulation tasks.

Syllabus

Introduction
Why should we use latent variable models
Fitting variable models
Data hungry
Simple regression
Bayesian inference
Covariance
Covariance kernels
Spectral mixture kernels
Margin likelihood
Correlation kernel
Factor analysis
Collab notebook
Challenges
Bayesian GPFA
Data limitations
Results


Taught by

MITCBMM

Related Courses

Business Analytics and Digital Media
Indian School of Business via Coursera
Ciencia de Datos Aplicada al Marketing
Universidad AnĂ¡huac via Coursera
AnĂ¡lisis Multivariable en SPSS
Galileo University via edX
Knowledge Inference and Structure Discovery for Education
University of Texas Arlington via edX
Factor Analysis in R
DataCamp