YoVDO

Meaningful Signals Within Deep Learning Models for Biology - Primer and Meeting

Offered By: Broad Institute via YouTube

Tags

Deep Learning Courses Bioinformatics Courses Computer Vision Courses Transfer Learning Courses Microscopy Courses Batch Normalization Courses ImageNet Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore cutting-edge research on meaningful signals within deep learning models for biological applications in this comprehensive conference talk from the Broad Institute. Delve into three key areas: the development of meaningful pretrained models for biology, the curation of pre-training data aligned with downstream tasks, and techniques for disentangling meaningful signals from experimental noise. Learn about the challenges and potential solutions in applying deep learning to biomedical imaging data, including the creation of CytoImageNet, a large-scale dataset of microscopy images. Discover how batch effects normalization (BEN) can significantly improve both supervised and unsupervised learning in high-throughput microscopy experiments. Gain valuable insights into the latest advancements in computational biology and their implications for future research and applications.

Syllabus

Primer: Towards Meaningful Pretrained Models for Biology
Meeting Part 1: Meaningful choice/curation of pre-training data in alignment with a downstream task
Meeting Part 2: Disentangling Meaningful Signal from Experimental Noise within Deep Learning Models


Taught by

Broad Institute

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera
Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera
Leading Ambitious Teaching and Learning
Microsoft via edX