YoVDO

Scalable Single-Cell Models for eQTL Mapping - Primer and Main Talk

Offered By: Broad Institute via YouTube

Tags

Computational Biology Courses Gene Expression Courses Autoimmune Diseases Courses Statistical Models Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore scalable single-cell models for robust cell-state-dependent eQTL mapping in this comprehensive talk and primer. Delve into the challenges of parametrizing single-cell gene expression profiles and testing associations in large datasets. Learn about a new generalizable approach using non-parametric bootstrap procedures and the Julia programming language to identify cell state-dependent eQTLs efficiently. Discover how this method can be applied to identify autoimmune disease risk loci with context-specific effects in memory T cells. The primer covers the evolution of statistical models for eQTL mapping, representations of single-cell states for state-dependent analyses, and ongoing computational challenges in the field. Gain insights into how single-cell RNA-seq datasets enable richer analyses of gene expression variation between cells and individuals, and understand the potential of single-cell eQTL models to capture disease-relevant, state-dependent regulatory effects.

Syllabus

MIA: Jose Alquicira-Hernandez, Scalable single-cell models for eQTL mapping; Primer by Aparna Nathan


Taught by

Broad Institute

Related Courses

Synapses, Neurons and Brains
Hebrew University of Jerusalem via Coursera
Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)
Moscow Institute of Physics and Technology via Coursera
Bioinformatics Algorithms (Part 2)
University of California, San Diego via Coursera
Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera
Neuronal Dynamics
École Polytechnique Fédérale de Lausanne via edX