On the Metric Distortion of Embedding Persistence Diagrams into RKHS
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore the metric properties of embedding Persistence Diagrams (PDs) into Reproducing Kernel Hilbert Spaces (RKHS) in this 55-minute lecture from the Applied Algebraic Topology Network. Delve into the challenges of using PDs in Machine Learning through kernel methods and understand the importance of maintaining stability guarantees when embedding PDs into RKHS. Examine the relationship between RKHS distance and diagram distances, and investigate the possibility of creating bi-Lipschitz maps for PD embeddings. Learn about the limitations of embedding PDs into both infinite-dimensional and finite-dimensional RKHS, including the dependence on PD cardinalities and the impossibility of finding bi-Lipschitz embeddings in finite-dimensional spaces, even with bounded cardinality restrictions.
Syllabus
Mathieu Carrière (2/19/19): On the metric distortion of embedding persistence diagrams into RKHS
Taught by
Applied Algebraic Topology Network
Related Courses
機器學習技法 (Machine Learning Techniques)National Taiwan University via Coursera Utilisez des modèles supervisés non linéaires
CentraleSupélec via OpenClassrooms Statistical Machine Learning
Eberhard Karls University of Tübingen via YouTube Interplay of Linear Algebra, Machine Learning, and HPC - JuliaCon 2021 Keynote
The Julia Programming Language via YouTube Interpolation and Learning With Scale Dependent Kernels
MITCBMM via YouTube