YoVDO

Utilisez des modèles supervisés non linéaires

Offered By: CentraleSupélec via OpenClassrooms

Tags

Machine Learning Courses Data Science Courses Python Courses Support Vector Machine (SVM) Courses Classification Courses Kernel Methods Courses Ridge Regression Courses

Course Description

Overview

Dans le cours Entraînez un modèle prédictif linéaire, vous avez appris à construire des modèles linéaires de classification binaire ou multi-classe et de régression.

Mais ceux-ci peuvent ne pas être adaptés à la nature de vos données. Dans ce cours, vous apprendrez à entraîner des modèles supervisés non-linéaires sur vos données.

Vous comprendrez comment construire un modèle non-linéaire grâce à une redescription des données, et saurez utiliser les méthodes à noyaux, qui permettent d’étendre les notions de SVM et de régression ridge au cas non-linéaire.

Prérequis :

Ce cours fait partie du parcours Data Scientist. Il se situe au croisement des mathématiques et de l'informatique. Pour en profiter pleinement, n'hésitez pas à vous rafraîchir la mémoire, avant ou pendant le cours, sur :

  • Python pour le calcul numérique (numpy) et la création de graphiques (pyplot), que nous utiliserons dans les parties TP du cours,
  • Quelques notions d'algèbre linéaire : manipulation de vecteurs, multiplications de matrices, normes, et valeurs/vecteurs propres,
  • Quelques notions de probabilités et statistiques, telles que distribution de loi de probabilité et variance,
  • Les notions de régression linéaire ridge et SVM.

Syllabus

Part #1 - Utilisez des noyaux pour appliquer des algorithmes linéaires au cas non-linéaire
1. Transformez un problème non-linéaire en un problème linéaire
2. Classifiez vos données avec une SVM à noyau
3. Apprenez des étiquettes réelles avec une régression ridge à noyau
Quiz: Partie 1

Part #2 - Entraînez un réseau de neurones artificiels
1. Entraînez un réseau de neurones simple
2. Empilez les perceptrons
Quiz: Partie 2


Taught by

Chloé-Agathe Azencott

Tags

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent