YoVDO

Extracting Persistence Features with Hierarchical Stabilisation

Offered By: Applied Algebraic Topology Network via YouTube

Tags

Algebraic Topology Courses Data Analysis Courses Kernel Methods Courses Persistence Modules Courses

Course Description

Overview

Explore the complexities of multi-parameter persistence in this 43-minute conference talk by Martina Scolamiero. Delve into the hierarchical stabilisation framework for producing stable invariants in persistence modules. Understand the fundamental role of metrics in comparing persistence modules and focus on the stable rank invariant. Examine the challenges of computing stable rank in multi-parameter cases and its practical applications in one-parameter persistence. Learn how varying metrics can enhance classification accuracy in both artificial and real-world datasets. Gain insights from the collaborative work of the TDA group at KTH in extracting persistence features and understanding complex correlation patterns in multi-measurement datasets.

Syllabus

Martina Scolamiero 9/15/21: Extracting persistence features with hierarchical stabilisation


Taught by

Applied Algebraic Topology Network

Related Courses

機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Utilisez des modèles supervisés non linéaires
CentraleSupélec via OpenClassrooms
Statistical Machine Learning
Eberhard Karls University of Tübingen via YouTube
Interplay of Linear Algebra, Machine Learning, and HPC - JuliaCon 2021 Keynote
The Julia Programming Language via YouTube
Interpolation and Learning With Scale Dependent Kernels
MITCBMM via YouTube