Extracting Persistence Features with Hierarchical Stabilisation
Offered By: Applied Algebraic Topology Network via YouTube
Course Description
Overview
Explore the complexities of multi-parameter persistence in this 43-minute conference talk by Martina Scolamiero. Delve into the hierarchical stabilisation framework for producing stable invariants in persistence modules. Understand the fundamental role of metrics in comparing persistence modules and focus on the stable rank invariant. Examine the challenges of computing stable rank in multi-parameter cases and its practical applications in one-parameter persistence. Learn how varying metrics can enhance classification accuracy in both artificial and real-world datasets. Gain insights from the collaborative work of the TDA group at KTH in extracting persistence features and understanding complex correlation patterns in multi-measurement datasets.
Syllabus
Martina Scolamiero 9/15/21: Extracting persistence features with hierarchical stabilisation
Taught by
Applied Algebraic Topology Network
Related Courses
Social Network AnalysisUniversity of Michigan via Coursera Intro to Algorithms
Udacity Data Analysis
Johns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX