YoVDO

Markov Random Fields, Markov Chains, and Markov Logic Networks - Probabilistic Graphical Models Tutorial

Offered By: Neuro Symbolic via YouTube

Tags

Markov Chains Courses Artificial Intelligence Courses Machine Learning Courses Python Courses Probabilistic Graphical Models Courses Markov Chain Monte Carlo Courses Neuro-Symbolic AI Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a comprehensive 44-minute lecture on probabilistic graphical models, focusing on Markov Random Fields (MRFs), Markov Logic Networks (MLNs), and Markov Chains. Delve into the intricacies of these advanced concepts with Professor Gerardo Simari from UNS, Argentina. Gain insights into full examples, key applications, and the Markov Chain Monte Carlo (MCMC) method. Access accompanying slides for enhanced learning. Part of the Neuro Symbolic Channel's series on artificial intelligence and machine learning, this video bridges the gap between symbolic methods and deep learning, offering valuable knowledge for those interested in cutting-edge AI algorithms and progress towards artificial general intelligence (AGI).

Syllabus

Markov Random Fields (MRFs)
Markov Logic Networks
A Full Example
Remarks
Markov Chains
Example: Matrix Method.
Example: Equation Method
Visualization Tool
A Key Application of MCs
Markov Chain Monte Carlo (MCMC)


Taught by

Neuro Symbolic

Related Courses

Visual Concept Grounding for Lifelong Learning
Neuro Symbolic via YouTube
Human-Aware Metacognitive AI - Lecture on Planning with Incomplete Model Knowledge
Neuro Symbolic via YouTube
Deep Ontological Networks: An Overview and Implementation
Neuro Symbolic via YouTube
Scene Graphs: Overview and Current Research
Neuro Symbolic via YouTube
Language Agents with LLMs - Evolutionary Step in Artificial Intelligence
Neuro Symbolic via YouTube