Machine-Learned Symmetries by Konstantin Matchev
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore machine-learned symmetries in high energy physics through this comprehensive lecture by Konstantin Matchev. Delve into advanced statistical methods and machine learning techniques applied to particle physics research. Gain insights into how symmetries can be discovered and leveraged using data-driven approaches. Learn about cutting-edge applications of deep learning and artificial intelligence in analyzing large datasets from experiments like the Large Hadron Collider. Understand the potential for machine learning to uncover new physics and precisely measure properties of fundamental particles. Suitable for PhD students, postdocs, and researchers in theoretical or experimental particle physics and astrophysics with programming experience and knowledge of event simulation tools.
Syllabus
Machine-Learned Symmetries by Konstantin Matchev
Taught by
International Centre for Theoretical Sciences
Related Courses
Social Network AnalysisUniversity of Michigan via Coursera Intro to Algorithms
Udacity Data Analysis
Johns Hopkins University via Coursera Computing for Data Analysis
Johns Hopkins University via Coursera Health in Numbers: Quantitative Methods in Clinical & Public Health Research
Harvard University via edX