Local Llama 3.2 (3B) Tutorial - Summarization, Structured Text Extraction, and Data Labelling
Offered By: Venelin Valkov via YouTube
Course Description
Overview
Explore the capabilities of Meta AI's Llama 3.2 (3B) model in this comprehensive tutorial video. Learn how to set up and run the model using Ollama, and dive into practical applications such as data labeling, text summarization, structured data extraction, and question-answering. Follow along with Jupyter Notebook demonstrations and discover how to leverage this local language model for various natural language processing tasks. Gain insights into the model's performance and potential use cases, from creating LinkedIn posts to extracting information from tables. Perfect for developers and AI enthusiasts looking to harness the power of edge-optimized language models.
Syllabus
- Welcome
- Text tutorial on MLExpert.io
- Llama 3.2 on Ollama
- Download and run Llama 3.2 3B
- Jupyter Notebook setup
- Coding
- Labelling data
- Text summarization
- LinkedIn post
- Structured data extraction
- Rag/Question-answering
- Table data extraction
- Conclusion
Taught by
Venelin Valkov
Related Courses
LLaMA- Open and Efficient Foundation Language Models - Paper ExplainedYannic Kilcher via YouTube Alpaca & LLaMA - Can it Compete with ChatGPT?
Venelin Valkov via YouTube Experimenting with Alpaca & LLaMA
Aladdin Persson via YouTube What's LLaMA? ChatLLaMA? - And Some ChatGPT/InstructGPT
Aladdin Persson via YouTube Llama Index - Step by Step Introduction
echohive via YouTube