Fine-Tuning Vision Transformer Classifier for EyePacs Dataset Quality Model - Part 1
Offered By: The Machine Learning Engineer via YouTube
Course Description
Overview
Dive into the world of fine-tuning Vision Transformers (ViT) with custom datasets in this 56-minute video tutorial, the first in a series of four. Learn how to leverage a pre-trained model by Google, initially trained on the ImageNet 21k dataset, and fine-tune it using the EyeQ Dataset for quality assessment purposes. Explore the EyeQ Dataset, a subset of the EyePacs Dataset originally used in the Diabetic Retinopathy Detection Kaggle Competition. Follow along with practical demonstrations and access the accompanying notebooks on GitHub to enhance your understanding of machine learning techniques for image classification tasks.
Syllabus
LLMOPS :Fine Tune ViT classifier EyePacs Dataset. Create and FineTune Quality Model #machinelerning
Taught by
The Machine Learning Engineer
Related Courses
Structuring Machine Learning ProjectsDeepLearning.AI via Coursera Natural Language Processing on Google Cloud
Google Cloud via Coursera Introduction to Learning Transfer and Life Long Learning (3L)
University of California, Irvine via Coursera Advanced Deployment Scenarios with TensorFlow
DeepLearning.AI via Coursera Neural Style Transfer with TensorFlow
Coursera Project Network via Coursera