YoVDO

How to Build a Q&A AI in Python - Open-Domain Question-Answering

Offered By: James Briggs via YouTube

Tags

BERT Courses Python Courses Semantic Search Courses Fine-Tuning Courses

Course Description

Overview

Learn how to build an open-domain question-answering (ODQA) AI system in Python. Explore the fundamentals of natural language processing for semantic search, including retriever models, fine-tuning techniques, and evaluation methods. Discover how to set up a vector database, implement querying functionality, and create human-like Q&A interfaces. Gain insights into the importance of ODQA systems, training data preparation, and the use of tools like Pinecone for efficient information retrieval.

Syllabus

Why QA
Open Domain QA
Do we need to fine-tune?
How Retriever Training Works
SQuAD Training Data
Retriever Fine-tuning
IR Evaluation
Vector Database Setup
Querying
Final Notes


Taught by

James Briggs

Related Courses

Design Computing: 3D Modeling in Rhinoceros with Python/Rhinoscript
University of Michigan via Coursera
A Practical Introduction to Test-Driven Development
LearnQuest via Coursera
FinTech for Finance and Business Leaders
ACCA via edX
Access Bioinformatics Databases with Biopython
Coursera Project Network via Coursera
Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera