How to Build a Q&A AI in Python - Open-Domain Question-Answering
Offered By: James Briggs via YouTube
Course Description
Overview
Learn how to build an open-domain question-answering (ODQA) AI system in Python. Explore the fundamentals of natural language processing for semantic search, including retriever models, fine-tuning techniques, and evaluation methods. Discover how to set up a vector database, implement querying functionality, and create human-like Q&A interfaces. Gain insights into the importance of ODQA systems, training data preparation, and the use of tools like Pinecone for efficient information retrieval.
Syllabus
Why QA
Open Domain QA
Do we need to fine-tune?
How Retriever Training Works
SQuAD Training Data
Retriever Fine-tuning
IR Evaluation
Vector Database Setup
Querying
Final Notes
Taught by
James Briggs
Related Courses
Design Computing: 3D Modeling in Rhinoceros with Python/RhinoscriptUniversity of Michigan via Coursera A Practical Introduction to Test-Driven Development
LearnQuest via Coursera FinTech for Finance and Business Leaders
ACCA via edX Access Bioinformatics Databases with Biopython
Coursera Project Network via Coursera Accounting Data Analytics
University of Illinois at Urbana-Champaign via Coursera