YoVDO

Learning Representations of Galaxies from Simulations and Observations - Suchetha Cooray

Offered By: Kavli Institute for Theoretical Physics via YouTube

Tags

Astrostatistics Courses Data Science Courses Data Analysis Courses Machine Learning Courses

Course Description

Overview

Explore the application of machine learning and data science techniques to galaxy formation and evolution in this 28-minute conference talk by Suchetha Cooray from Nagoya University. Discover how astrostatistics and advanced data analysis tools are revolutionizing our understanding of galaxies through large-scale surveys, integral field unit spectroscopy, and multi-wavelength imaging. Learn about the potential of outlier detection algorithms in identifying anomalous galaxies and the importance of linking observational data with theoretical models, including cosmological simulations. Gain insights into the broader context of the "Galaxy Evolution in the Age of Machine Learning" conference, which aims to translate data-driven results into physical understanding and advance the field of galaxy formation physics.

Syllabus

Learning representations of galaxies from simulations & observations ▸ Suchetha Cooray (Nagoya U)


Taught by

Kavli Institute for Theoretical Physics

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent