YoVDO

The Norm of the Backward Shift Operator on H^1 is 2/√3

Offered By: Centre International de Rencontres Mathématiques via YouTube

Tags

Complex Analysis Courses Mathematical Analysis Courses Functional Analysis Courses Banach Spaces Courses Hilbert Spaces Courses Operator Theory Courses Hardy Spaces Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a 28-minute conference talk delivered by Kristian Seip at the Centre International de Rencontres Mathématiques in Marseille, France, during the thematic meeting "Shapes and shades of analysis: in depth and beyond" on May 2, 2024. Delve into the mathematical proof that the norm of the backward shift operator on H^1 is 2/√3. Access this video and other talks by renowned mathematicians through CIRM's Audiovisual Mathematics Library, which offers features such as chapter markers, keywords, enriched content with abstracts and bibliographies, and multi-criteria search options. Filmed by Guillaume Hennenfent, this presentation provides valuable insights for those interested in advanced mathematical analysis and operator theory.

Syllabus

Kristian Seip: The norm of the backward shift operator on $H^1$ is $\frac{2}{\sqrt{3}}$


Taught by

Centre International de Rencontres Mathématiques

Related Courses

Intro to Algorithms
Udacity
Games without Chance: Combinatorial Game Theory
Georgia Institute of Technology via Coursera
Calculus Two: Sequences and Series
Ohio State University via Coursera
Big Data: from Data to Decisions
Queensland University of Technology via FutureLearn
Simulation and Modeling for Engineering and Science
Georgia Institute of Technology via edX