Knots-Quivers Correspondence: Generalizations and Combinatorics
Offered By: Banach Center via YouTube
Course Description
Overview
Explore the fundamental concepts of knots-quivers correspondence in this 1-hour 13-minute lecture by Marko Stosic from Instituto Superior Tecnico, Lisbon. Delve into the original form of the correspondence and its various extensions and generalizations. Discover surprising applications in enumerative combinatorics, including the counting of lattice paths and Schröder paths. Examine recent findings related to quivers with higher level generators, gaining insights into the intersection of knot theory, quiver representations, and combinatorial mathematics.
Syllabus
Knots-quivers correspondence: generalizations and combinatorics
Taught by
Banach Center
Related Courses
Теория функций комплексного переменногоHigher School of Economics via Coursera Квантовая механика. Часть 1. Принципы квантовой механики
National Research Nuclear University MEPhI via edX Probabilistic Methods in PDE
Indian Institute of Science Education and Research, Pune via Swayam Уравнения математической физики. Часть 2
National Research Nuclear University MEPhI via edX Уравнения математической физики. Часть 1
National Research Nuclear University MEPhI via edX