YoVDO

Transfer Learning Larochelle

Offered By: Association for Computing Machinery (ACM) via YouTube

Tags

Transfer Learning Courses Deep Learning Courses Few-shot Learning Courses Fine-Tuning Courses

Course Description

Overview

Explore transfer learning in deep learning with Hugo Larochelle's 44-minute conference talk from KDD2020. Delve into the importance of transfer learning, few-shot learning, and modern fine-tuning techniques. Examine prototypical networks, model-agnostic meta-learning, and the concept of training a fine-tuning procedure. Evaluate the meta-dataset approach and investigate universal representations and their transformers. Gain insights into the latest results in the field and discuss remaining challenges in transfer learning for deep neural networks.

Syllabus

Intro
WHYTRANSFER LEARNING • Deep leaming successes have required a lot of labeled training data
FEW-SHOT LEARNING
MODERN TRANSFER LEARNING: FINE-TUNING
LEARNING PROBLEM STATEMENT
PROTOTYPICAL NETWORKS
MODEL-AGNOSTIC META-LEARNING • Training a 'fine-tuning procedure
EVALUATION: META-DATASET
UNIVERSAL REPRESENTATIONS
UNIVERSAL REPRESENTATION TRANSFORMER
RESULTS
REMAINING CHALLENGES


Taught by

Association for Computing Machinery (ACM)

Related Courses

Stanford Seminar - Enabling NLP, Machine Learning, and Few-Shot Learning Using Associative Processing
Stanford University via YouTube
GUI-Based Few Shot Classification Model Trainer - Demo
James Briggs via YouTube
HyperTransformer - Model Generation for Supervised and Semi-Supervised Few-Shot Learning
Yannic Kilcher via YouTube
GPT-3 - Language Models Are Few-Shot Learners
Yannic Kilcher via YouTube
IMAML- Meta-Learning with Implicit Gradients
Yannic Kilcher via YouTube