IMAML- Meta-Learning with Implicit Gradients
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore a detailed video explanation of the iMAML (Implicit Model-Agnostic Meta-Learning) paper, which presents an innovative approach to gradient-based meta-learning. Learn how this method circumvents the computational challenges of full backpropagation through inner optimization procedures by cleverly introducing a quadratic regularizer. Dive into key concepts including meta-learning fundamentals, the differences between MAML and iMAML, problem formulation, proximal regularization, and the derivation of implicit gradients. Gain insights into the intuition behind this approach, understand the full algorithm, and examine experimental results. This comprehensive breakdown covers the paper's abstract, authors, and provides links to additional resources for further study.
Syllabus
- Intro
- What is Meta-Learning?
- MAML vs iMAML
- Problem Formulation
- Proximal Regularization
- Derivation of the Implicit Gradient
- Intuition why this works
- Full Algorithm
- Experiments
Taught by
Yannic Kilcher
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Natural Language Processing
Columbia University via Coursera Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent