Divide and Conquer: Carving Out Symbolic Models from BlackBox for More Efficient Domain Adaptation
Offered By: Computational Genomics Summer Institute CGSI via YouTube
Course Description
Overview
Explore a 32-minute lecture from the Computational Genomics Summer Institute (CGSI) 2023 on dividing and conquering symbolic models from black box systems for more efficient domain adaptation. Delve into the importance of model explanation, general design approaches, pros and cons, desirable properties, and the general idea and setup. Examine applications in medical imaging through a toy example, comparing performance, transferability, and fine-tuning. Gain insights from related research papers to enhance understanding of the topic.
Syllabus
Introduction
Why do we need model explanation
General design approaches
Pros and cons
desirable properties
general idea
general setup
Medical Imaging
Toy Example
Performance Comparison
Transferability
Fine Tuning
Performance
Conclusion
Taught by
Computational Genomics Summer Institute CGSI
Related Courses
Introduction to Deep LearningMassachusetts Institute of Technology via YouTube Taming Dataset Bias via Domain Adaptation
Alexander Amini via YouTube Making Our Models Robust to Changing Visual Environments
Andreas Geiger via YouTube Learning Compact Representation with Less Labeled Data from Sensors
tinyML via YouTube Geo-localization Framework for Real-world Scenarios - Defense Presentation
University of Central Florida via YouTube