YoVDO

Convergence of the Two-Point Form Factor Series in the 1+1 Dimensional Sinh-Gordon Model

Offered By: International Mathematical Union via YouTube

Tags

Mathematical Physics Courses Mathematical Analysis Courses Quantum Field Theory Courses Random Matrix Theory Courses Integrable Systems Courses

Course Description

Overview

Explore a 48-minute conference talk delving into the convergence of form factor series in the Sinh-Gordon model, a fundamental massive integrable quantum field theory in 1+1 dimensions. Discover the S-matrix bootstrap program's role in constructing integrable quantum field theories and its connection to multi-point correlation functions. Learn about the technical challenges surrounding the convergence of form factor series expansions and their importance in establishing mathematical rigor. Examine the innovative technique developed by the speaker to prove convergence, focusing on obtaining sharp estimates for large-n behaviors of n-fold integrals. Gain insights into how this approach refines methods from random matrix theory analysis. Access accompanying slides to enhance understanding of this complex topic in mathematical physics.

Syllabus

Karol Kozlowski: Convergence of the two-point form factor series in the 1+1 dimensional Sinh...


Taught by

International Mathematical Union

Related Courses

Superdiffusion, Subdiffusion, Integrability - Sarang Gopalakrishnan
Kavli Institute for Theoretical Physics via YouTube
The Computational Theory of Riemann-Hilbert Problems - Lecture 4
International Centre for Theoretical Sciences via YouTube
Forced Integrable Systems - The Case of Sine-Gordon Equation by Vasudeva Murthy
International Centre for Theoretical Sciences via YouTube
Basic Lectures on Bethe Ansatz - Pedagogical Lecture 2
International Centre for Theoretical Sciences via YouTube
Finite-Size Effects in Integrable Systems - Lecture 3
International Centre for Theoretical Sciences via YouTube