Using Dynamics to Constrain Connectivity of Neuronal Population in Respiratory Brainstem
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a case study on using dynamics to constrain neuronal population connectivity in the respiratory brainstem. Delve into the synchronized bursting activity of brainstem neurons driving diaphragm movement during mammalian respiration. Examine experimental observations of "pre-inspiratory" tonic spiking and its potential to trigger widespread, synchronized activations manifesting as small-scale burstlets or full-blown bursts. Analyze two models related to this process, with a focus on a multi-state bootstrap percolation model that may provide insights into the unknown connection architecture of this network. Gain valuable knowledge from Jonathan Rubin of the University of Pittsburgh in this 53-minute lecture recorded on February 13, 2024, as part of IPAM's Mathematical Approaches for Connectome Analysis Workshop.
Syllabus
Jonathan Rubin - dynamics to constrain connectivity of neuronal population in respiratory brainstem
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Basic Behavioral NeurologyUniversity of Pennsylvania via Coursera Neuroethics
University of Pennsylvania via Coursera Medical Neuroscience
Duke University via Coursera Drugs and the Brain
California Institute of Technology via Coursera Computational Neuroscience
University of Washington via Coursera