YoVDO

Universality Class of a Spinor Bose-Einstein Condensate Far from Equilibrium

Offered By: PCS Institute for Basic Science via YouTube

Tags

Quantum Many-body Systems Courses Universality Classes Courses Bose-Einstein Condensates Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the universal dynamics and classification of nonequilibrium quantum many-body systems in this 47-minute lecture by Jaeyoon Choi from PCS Institute for Basic Science. Delve into the concept of scale invariance and self-similarity in physics, and how it applies to isolated quantum systems during thermalization. Examine recent experimental observations of universal dynamics in atomic systems, demonstrating their independence from microscopic details. Discover how the universal dynamics in quantum systems can be classified based on the symmetry of order parameters and the dynamics of topological defects. Learn about experiments using a ferromagnetic atomic condensate in two dimensions to study self-similar coarsening dynamics driven by magnetic domain wall motions. Compare the universal scaling characterized by power law exponents in systems with Z2 symmetry and isotropic spin symmetry SO(3). Gain insights into how these findings can contribute to understanding strongly correlated quantum systems under extreme conditions, such as the early universe after inflation.

Syllabus

Jaeyoon Choi: Universality Class of a Spinor Bose-Einstein Condensate far from Equilibrium


Taught by

PCS Institute for Basic Science

Related Courses

Novel Phases of Matter Near Absolute Zero Temperature by Sanjukta Roy
International Centre for Theoretical Sciences via YouTube
A Bose-Einstein Condensate Thermal Engine - Gabriele De Chiara
Kavli Institute for Theoretical Physics via YouTube
Excitation Spectrum and Time Evolution of Bose-Einstein Condensates
Hausdorff Center for Mathematics via YouTube
Vortex Cluster Dependent Energy Cascade in Turbulent Rotating Bose-Einstein Condensates
International Centre for Theoretical Sciences via YouTube
Wave Dark Matter
Galileo Galilei Institute via YouTube