Schmutz-Thurston Duality in Mapping Class Group-Equivariant Cell Decompositions
Offered By: Erwin Schrödinger International Institute for Mathematics and Physics (ESI) via YouTube
Course Description
Overview
Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore the intricacies of mapping class group-equivariant cell decompositions of Teichmueller space in this 51-minute lecture from the Thematic Programme on "Geometry beyond Riemann: Curvature and Rigidity" at the Erwin Schrödinger International Institute for Mathematics and Physics. Delve into the pioneering work of Schmutz and Thurston on closed compact surfaces without marked points. Discover how a special case of Schmutz's construction can be interpreted as dual to Thurston's mapping class group-equivariant spine. Gain insights into the simplified theory of cell decompositions when punctures or marked points are present, and understand the challenges faced when studying surfaces without these features.
Syllabus
Ingrid Irmer - Schmutz-Thurston duality
Taught by
Erwin Schrödinger International Institute for Mathematics and Physics (ESI)
Related Courses
Dehn-Filling-Like Quotients of Mapping Class GroupsCentre de recherches mathématiques - CRM via YouTube Loxodromic Elements in Right-Angled Artin Groups
Centre de recherches mathématiques - CRM via YouTube Symplectic Mapping Class Groups: Structural Properties from Smooth to C⁰
Centre International de Rencontres Mathématiques via YouTube Bowditch Representations and Dynamics on Character Varieties - Part 2
Big Ideas In Dynamics via YouTube Heisenberg Homology of Surface Configurations
Centre de recherches mathématiques - CRM via YouTube