YoVDO

Best Lipschitz Maps and Transverse Measures - Part 2

Offered By: IMSA via YouTube

Tags

Differential Geometry Courses Noether's Theorem Courses Lie Algebras Courses Hyperbolic Surfaces Courses Teichmüller Theory Courses Geometric Topology Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Delve into the second part of a lecture series on best Lipschitz maps and transverse measures presented by Karen Uhlenbeck from the University of Texas at Austin. Explore a scheme for finding maps that realize the best Lipschitz constant between hyperbolic surfaces within a fixed homotopy class. Examine the use of Schatten-von Neumann norm approximations and discover how transverse measures with values in a Lie algebra bundle emerge from Noether's theorem. Investigate the connection between limiting transverse measures and infinitesimal earthquakes along canonical laminations, providing an analytic description of this geometric phenomenon. Gain insights into the relationship between length variation and earthquakes in Teichmuller theory, bridging concepts from geometric topology and differential geometry.

Syllabus

Karen Uhlenbeck, University of Texas at Austin: Best Lipschitz Maps and Transverse Measures Pt. 2


Taught by

IMSA

Related Courses

An Introduction to smooth Manifolds
Indian Institute of Science Bangalore via Swayam
Group Theory methods in Physics
Indian Institute of Technology Bombay via Swayam
Poisson Brackets, Non-Canonical Hamiltonian Systems and Euler's Rigid Body Equations
Ross Dynamics Lab via YouTube
The Ubiquity of ADE Graphs, and the Mutation and Numbers Games - Math Seminars
Insights into Mathematics via YouTube
The J Function, SL(2) and the Jacobi Identity - Universal Hyperbolic Geometry
Insights into Mathematics via YouTube