YoVDO

Polar Deconvolution of Mixed Signals - IMAGINE Seminar Series

Offered By: Society for Industrial and Applied Mathematics via YouTube

Tags

Signal Processing Courses Algorithm Design Courses Convex Optimization Courses Computational Mathematics Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Attend a virtual seminar on polar deconvolution of mixed signals, presented by Michael Friedlander from the University of British Columbia. Explore the signal demixing problem, which aims to separate superposed signals into their individual components. Learn about modeling the superposition process as polar convolution of atomic sets and how convex cone duality is utilized to develop an efficient two-stage algorithm with sublinear iteration complexity. Discover how random signal measurements can lead to stable recovery of low-complexity and mutually-incoherent signals with high probability and optimal sample complexity. Gain insights from numerical experiments conducted on both real and synthetic data, which confirm the theory and efficiency of the proposed approach. This 55-minute talk, part of the Inaugural Imaging & Inverse Problems (IMAGINE) OneWorld SIAM-IS Virtual Seminar Series, is organized by the Society for Industrial and Applied Mathematics and features joint work with Zhenan Fan, Halyun Jeong, and Babhru Joshi from the University of British Columbia.

Syllabus

Inaugural Imaging & Inverse Problems (IMAGINE) OneWorld SIAM-IS Virtual Seminar Series Talk


Taught by

Society for Industrial and Applied Mathematics

Related Courses

Natural Language Processing
Columbia University via Coursera
Intro to Algorithms
Udacity
Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera
Paradigms of Computer Programming
Université catholique de Louvain via edX
Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX