Improved Machine Learning Algorithm for Predicting Ground State Properties
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore an advanced machine learning algorithm for predicting ground state properties of quantum many-body systems in this 1 hour 15 minute lecture by Laura Lewis from Caltech. Delivered as part of the Quantum Summer Cluster Workshop at the Simons Institute, discover how this classical ML approach incorporates an inductive bias encoding geometric locality to efficiently predict properties of gapped local Hamiltonians. Learn about the algorithm's ability to make predictions after training on only O(log(n)) data from Hamiltonians in the same quantum phase of matter, a significant improvement over previous methods requiring O(n^c) data. Examine the algorithm's O(n log n) scaling for training and prediction time, and review numerical experiments on physical systems with up to 45 qubits that demonstrate its effectiveness with small training datasets.
Syllabus
Improved Machine Learning Algorithm for Predicting Ground State Properties
Taught by
Simons Institute
Related Courses
FA17: Machine LearningGeorgia Institute of Technology via edX Machine Learning
Georgia Institute of Technology via edX Noether Networks - Meta-Learning Useful Conserved Quantities
Yannic Kilcher via YouTube An Image is Worth 16x16 Words - Transformers for Image Recognition at Scale
Yannic Kilcher via YouTube Discovering Symbolic Models from Deep Learning with Inductive Biases
Yannic Kilcher via YouTube