YoVDO

Machine Learning

Offered By: Georgia Institute of Technology via edX

Tags

Artificial Intelligence Courses Machine Learning Courses Supervised Learning Courses Unsupervised Learning Courses Reinforcement Learning Courses Algorithms Courses Inductive Bias Courses

Course Description

Overview

Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. This area is also concerned with issues both theoretical and practical.

In this course, we will present algorithms and approaches in such a way that grounds them in larger systems as you learn about a variety of topics, including:

  • statistical supervised and unsupervised learning methods
  • randomized search algorithms
  • Bayesian learning methods
  • reinforcement learning

The course also covers theoretical concepts such as inductive bias, the PAC and Mistake‐bound learning frameworks, minimum description length principle, and Ockham's Razor. In order to ground these methods the course includes some programming and involvement in a number of projects.

By the end of this course, you should have a strong understanding of machine learning so that you can pursue any further and more advanced learning.

This is a three-credit course.


Syllabus

Week 1: ML is the ROX/SL 1- Decision Trees
Week 2: SL 2- Regression and Classification
Week 3: SL 3- Neutral Networks
Week 4: SL 4- Instance Based Learning
Week 5: SL 5- Ensemble B&B
Week 6: SL 6- Kernel Methods & SVMs
Week 7: SL 7- Comp Learning Theory
Week 8: SL 8- VC Dimensions
Week 9: SL9- Bayesian Learning
Week 10: SL 10- Bayesian Inference
Week 11: UL 1- Randomized Optimization
Week 12: UL 2- Clustering/ UL 3- Feature Selection
Week 13: UL 4- Feature Transformation/UL 5- Info Theory
Week 14: RL 1- Markov Decision Processes
Week 15: Reinforcement Learning
Week 16: RL 3 Game Theory/Outro

Taught by

Charles Isbell Jr.

Tags

Related Courses

Продвинутые методы машинного обучения
Higher School of Economics via Coursera
Advanced Machine Learning and Signal Processing
IBM via Coursera
Applied Data Science for Data Analysts
Databricks via Coursera
Applied Machine Learning
Johns Hopkins University via Coursera
Aprendizaje Automático con Python
IBM via Coursera