YoVDO

Ilya Molchanov - Random Sets Generated by Translates of a Convex Body

Offered By: Hausdorff Center for Mathematics via YouTube

Tags

Convex Geometry Courses Theoretical Mathematics Courses

Course Description

Overview

Explore the concept of K-hulls and K-strongly convex sets in Euclidean space through this 30-minute lecture. Delve into a general approach for analyzing the facial structure of K-strongly convex sets, drawing parallels to the established theory for polytopes. Examine the application of this theory to the case where A = Ξn represents a sample of n points uniformly distributed on a compact convex body K. Discover how the set of points x such that x+K contains the sample Ξn, when multiplied by n, converges in distribution to a zero cell of a specific Poisson hyperplane tessellation. Learn about the convergence in distribution of the f-vector of the K-hull of Ξn to a limiting random vector, as well as the convergence of all moments of the f-vector. This talk, presented by Ilya Molchanov at the Hausdorff Center for Mathematics, is based on joint work with Alexandr Marynych from Kiev.

Syllabus

Ilya Molchanov: Random sets generated by translates of a convex body


Taught by

Hausdorff Center for Mathematics

Related Courses

Introduction to Algebraic Topology (Part-I)
Indian Institute of Technology Bombay via Swayam
Math for Society
YouTube
Nonrational Toric Geometry III - Quasifolds, Foliations, Combinatorics and One-parameter Families
IMSA via YouTube
The Convex Geometry of Blind Deconvolution and Matrix Completion Revisited
Hausdorff Center for Mathematics via YouTube
Daniel Dadush- Integer Programming and the Kannan-Lovasz Conjecture
Hausdorff Center for Mathematics via YouTube