Hyperparameter Optimization for Reinforcement Learning Using Meta's Ax
Offered By: Digi-Key via YouTube
Course Description
Overview
Syllabus
- Introduction
- What are hyperparameters
- Hyperparameter optimization loop
- Grid search
- Random search
- Bayesian optimization
- Install Python packages
- Import Python packages
- Configure Weights & Biases
- Set deterministic mode
- Load pendulum gymnasium environment
- Test pendulum environment
- Test random actions with dummy agent
- Testing and logging callbacks
- Define trial to train and test an agent
- Define project settings and hyperparameter ranges
- Create gymnasium environment
- Define Ax experiment to perform Bayesian optimization for hyperparameters
- Perform hyperparameter optimization and debugging
- Train agent with best hyperparameters
- Test agent
- Run additional trials
- Weights & Biases sweeps
Taught by
Digi-Key
Related Courses
Computational NeuroscienceUniversity of Washington via Coursera Reinforcement Learning
Brown University via Udacity Reinforcement Learning
Indian Institute of Technology Madras via Swayam FA17: Machine Learning
Georgia Institute of Technology via edX Introduction to Reinforcement Learning
Higher School of Economics via Coursera